If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X-1000=0
a = 1; b = 5; c = -1000;
Δ = b2-4ac
Δ = 52-4·1·(-1000)
Δ = 4025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4025}=\sqrt{25*161}=\sqrt{25}*\sqrt{161}=5\sqrt{161}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{161}}{2*1}=\frac{-5-5\sqrt{161}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{161}}{2*1}=\frac{-5+5\sqrt{161}}{2} $
| 3d+4=4-9d | | p=24÷6 | | 64+2e=8-5e | | 2u+2=u+7 | | 4r-16=0 | | 5s+10=0 | | 3+7y=10 | | 5(x-4)=3-x | | (4z-1)(4z-1)=0 | | 9/6+x=8/7 | | 11x-4=44-x | | -2x=-2*(-8) | | 580-Ax4=1588 | | 3x=-3+6x-12 | | 3x=-3=6x-12 | | 5-2(3-x)=16 | | 5-2(3-x=16 | | 4t+6=3t+9 | | 45=5c | | 2-3(2x+1)=23 | | x3-3x2-8x+24=0 | | 6v-2=4v+12 | | 6x-5=(2x-1)•4 | | 3j-6=24 | | 6x-5=(2x-1)4 | | a÷3+5=16 | | -(x+5)+2-x=3 | | 2x-12(-21/13)=38 | | 3y^2-8y=-7 | | 3+4x-(3x-5)=15 | | 3y^2-8y+7=0 | | 3x-3/6=3x+5/2 |